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Abstract—This paper studies the performance of the UPMEM
PiM architecture for long DNA sequence alignment. It investigate
different optimization strategies and shows that, as for x86,
UPMEM PiM can benefit from the specificity of its instruction
set. The Needleman & Wunsch implementation is based on an
adaptive banded dynamic programming algorithm. Contrary to
common belief, the analysis of two alignment use cases showed
that the DP algorithm has low memory requirements. However,
performance evaluation shows that the UPMEM PiM architec-
ture, which is primarily intended for data-intensive applications,
can outperform server-grade CPUs by a factor of 8 for aligning
long DNA sequences.

I. INTRODUCTION

The alignment of protein or DNA sequences is a basic
treatment in bioinformatics. It is involved in many pipelines for
processing genomics data, and can be very time consuming,
particularly for large datasets such as those generated by the
third generation sequencers that output long DNA sequences.
The error rate of these sequences, compared to the short
sequences produced by second generation sequencers, is gen-
erally quite high and requires heavier processing with more
complex algorithms.

Global alignment is one type of alignment, it compares
two sequences entirely, from the start to the end of both of
them. Global alignment of DNA sequences are used in many
time consuming situations. One of them is the construction
of a score matrix to build phylogeny trees. The input data
set is a pool of “conserved” DNA or RNA sequences from
different species such as the 16S Ribosomal RNA for bacteria.
A pairwise comparison between all sequences gives a score
matrix reflecting the distance between all sequences. Another
situation where global alignment is omnipresent is in the
problem of genome assembly, in the polishing phase where
high quality consensus sequences are required. More generally,
the production of high quality reads from raw reads produced
by sequencers on the same genomics regions requires the
computations of large consensus sequences.

Global sequence alignment is mainly based on dynamic
programming algorithms. Shortly, it consists in finding the
minimal number of basic edit operations to go from one
sequence to another one. Edit operations are substitution
(one character is transformed into another one), insertion
(one character is added) and deletion (one character is lost).
Needleman and Wunsch (N&W) [6] proposed an algorithm
based on dynamic programming that finds the optimal way

(the minimum of edit operations) to transform one sequence
into another one. The algorithm complexity is 0(N2) if N is
the size of both sequences.

The N&W algorithm provides the optimal alignment be-
tween two sequences. Its complexity is, however, relatively
high, which is particularly penalizing when long sequences
are compared. In fact, when two sequences are close, the
useful information to compute the alignment is located on the
diagonal of the matrix. Under these conditions, it is sufficient
to calculate only a band around the diagonal. The complexity
is greatly reduced and the results are the same as long as
the number of editing operations remains within a range
compatible with the size of the band.

This algorithm has been widely optimized for the x86
architecture [1], [3], [8]. An efficient implementation can be
found in the minimap2 tool [5] (and its underlying library
KSW2). In this paper we study the massive parallelization of
the N&W algorithm on a UPMEM PiM server and compared
it to KSW2. Input datasets are (1) a set 16S Ribosomal RNA
sequences and (2) a collection of raw long reads produced by
a sequencer for consensus. We show that using a PiM server,
an acceleration of up to 8.7x can be obtain compared to a
standard server grade machine.

The rest of the paper is structured as follows: first the
UPMEM PiM server and its programming environment are
presented. Section III describes the N&W algorithm, its affine
version, then the static and dynamic banded optimizations.
Section IV details the parallelization of N&W on the PiM
server. Section V provides results of different experimentation
and finally section VI concludes this paper.

II. UPMEM PIM SYSTEM

A. Architecture

UPMEM has developed a ”Process-in-Memory” (PiM) [2]
component that integrates DRAM memory and processing
units on the same chip. The PiM device is in the form of
DIMMs (Dual Inline Memory Module) where each module
contains 2 ranks of 64 DPUs (DRAM Processing Units). Each
DPU can only access a memory block of 64 MB (MRAM),
for a total of 8 GB of memory per module.

The host server directly access data from the 64MB DRAM
block of each DPU. It also has the responsibility to upload
and launch specific programs on the DPUs. After a program
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is launched, the whole rank is locked until all the DPUs on
that rank have finished their computation.

One of the main features of the DPU is that it has its
own instruction set (ISA) with fused jump instructions. This
mechanism allowing cycle-free jumps after most instructions
improves execution time by having efficient branching. Fur-
thermore, to speedup memory accesses, a DPU houses 64 KB
of working RAM (WRAM) which is accessed in one cycle,
similar to a high bandwidth cache.

A DPU is a true multi-threaded processor that moves
to another process every clock cycle. Up to 24 hardware
threads, called tasklets, can be run simultaneously and share
the DPU resources. The DPU instruction pipeline is 11 deep,
meaning that each instruction needs 11 cycles to retire. Fur-
thermore, this pipeline cannot simultaneously execute multiple
instructions from the same tasklet. Consequently, for optimal
performance, at least 11 tasklets must run in parallel.

Direct communication between DPUs is not possible as
there is no interconnection network between them. Moving
data from one DPU to another requires the intervention of
the host and must pass through it. This architecture model
must be taken into account when designing parallel algorithms
for a PiM-based UPMEM system. In fact, the workloads
on one DPU must be independent of the others to achieve
good performance. For large systems (several hundred GB
of main memory), the challenge is therefore to implement
efficient parallel algorithms by wisely using the UPMEM
PiM architecture and ensuring good load balancing between
thousands of threads.

A complete PiM-based UPMEM system is generally com-
posed of a legacy DRAM memory and a PiM DRAM memory
as shown figure 1. The host (a multi-core processor) access
both DRAMs in an undistinguished way.

Fig. 1. Server with PiM DIMMs.

B. Programming environment

Programming an UPMEM-PiM server usually requires to
write two programs (one for the host CPU, one for the DPUs)
and to synchronize them together.

An illustrated example is the querying of a database perma-
nently stored inside the PiM memory. The task of each DPU
will be simply to process a small part of the database. The

task of the host will be to broadcast a request to each DPU,
to run the DPU, and to collect the results from each DPU. In
that case, only two programs are needed.

DPU programs must be written in C. A library of routines is
provided to handle DPU features such as tasklet synchroniza-
tion or efficient memory transfers between the small WRAM
and the 64 MB MRAM. Simulator and debug tools are also
available to test the PiM parallelization of new programs.

From the host side, programs must be written in C, C++,
Python or Java. This program controls the whole application. It
has the job of initializing the DPUs with the right programs,
moving data to or from the DPUs, synchronizing the DPU
execution, etc. A library of primitive routines is also provided
to perform these basic tasks.

III. DYNAMIC PROGRAMMING ALGORITHM

This section recalls the dynamic programming (DP) technic
for finding alignment between two sequences, and motivates
the use of the banded approach for a PiM implementation.

A. Needleman & Wunsch algorithm

In the pairwise sequence alignment problem, we consider
as input a pair of sequence A = a1, a2, ..., ai, ..., am and B =
b1, b2, ..., bj , ..., bn where ai and bj are chosen from a finite
alphabet, e.g. A,T,G,C. The output is a sequence alignment
and a score. The N&W algorithm computes the optimal score
using the following recursion:

Hi,j = max

 Hi−1,j−1 + sub(ai, bj)
Hi−1,j − gap
Hi,j−1 − gap

(1)

Where sub(ai, bj) is the substitution cost and with the follow-
ing initialization:

H0,j = j ×−gap
Hi,0 = i×−gap

(2)

For DNA sequences it has a positive value if ai = bj (match)
and a negative value otherwise (mismatch). gap correspond to
the penalty cost for insertion or deletion. The global alignment
score is given by Hm,n. To get this score and due to the
recursion equation, the entire matrix H need to be computed.

Then, from the H matrix, the alignment is constructed with
a traceback procedure by retrieving the path in the matrix that
led to this score.

B. Affine gap extension

In fact, from a biological point of view, the gap penalty
model presented in the previous section is not satisfactory:
when successive gaps occur, the penalty is generally too high.
Gotoh [4] introduced a better way to model gap penalty using
an affine function. Two penalties are considered: the open
gap penalty and the extension gap penalty. In that case, the
recursion is more complex and three matrices (H ,I ,D) of size
m × n need to be computed, instead of a single one for the
original N&W algorithm. The alignment is constructed using
the same traceback strategy, but information from the three
matrices are required.
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C. Banded DP algorithm

As already mentioned, the complexity of the dynamic
programming algorithm is in O(m× n). For long sequences,
especially for DNA reads coming from the third generation
sequencing machines, whose length range from 10kbp to
100kbp, the execution time can become prohibitive. If there
is not much divergence between the sequences, the useful
information for calculating the score is mainly located on the
diagonal of the matrix. In other words, it is not necessary
to compute the whole matrix, but only the cells around the
diagonal. The strategy of the banded DP algorithm is therefore
to fill the cells in a predefined band width near the diagonal.
The complexity of the algorithm is reduced to O(w×(m+n))
where w is the width of the band. Practically, this size can be
set to a few hundreds, leading to a significant gain in term of
execution time and memory space.

From the perspective of UPMEM’s PiM architecture, this
strategy is essential. Storing entirely inside the MRAM the
three matrices of size m × n becomes impossible for large
values of m and n. On the other hand, storing only a few
hundred cells around the diagonal is quite possible.

D. Adaptive banded DP algorithm

In order to compute a correct score using the banded DP
algorithm, the path leading to that score must stay within the
band. Then, the size must be chosen according to estimation of
local maximum cumulative number of gaps. It also depends of
the difference between the length of the 2 sequences. Larger
the difference, bigger the band size. Estimating cumulative
gaps is not easy, and often leads to an overestimation of the
band size, and consequently an excess of calculations.

The adaptive band proposed by [7] is an efficient heuristics
to partially overcome these disadvantages. The computation of
the band is performed on an anti-diagonal window as shown
figure 2. At the beginning, the window is centered at position
[0,0] of the matrix (top left corner). Depending on the values
at the extremities of the window, it is shifted right or down to
follow the most likely path.

Fig. 2. (A) Fixed band: the optimal path must be located within the band
whose size depend of the number of gaps and the length difference between
the two sequences. (B) Adaptive band: the position of the window is adjusted
according to values computed in the anti-diagonal

This heuristics significantly decrease the number of calcu-
lation as the size of the window can be much smaller than the
size of the fixed band.

IV. IMPLEMENTATION

Our N&W implementation on UPMEM PiM server requires
two programs, one for the host and one for the DPUs. Shortly,

the host program dispatch the sequences into the DPUs, and
the DPU program perform the alignment computation. This
section details these two programs and how they synchronize
together.

A. Host program

The host performs the following actions:
• dispatch sequences to the DPU
• synchronize the DPU computation
• collect the results
Despite its apparent simplicity, these actions require close

attention to provide good performance, especially for optimiz-
ing the data transfers and ensuring efficient load balancing
between DPUs.

Data transfer optimization: In order to reduce the size of the
data flowing through the different server memories, characters
of the DNA sequences are packed into 2 bits since the alphabet
is limited to 4 characters: A, C, G and T. This greatly help to
minimize the quantity of data transfered between the host and
DPUs, it also reduce subsequent transfer between MRAM and
WRAM.

Load balancing: The way in which the DNA sequences are
distributed to the DPUs completely determines the overall load
balancing. This part is essential because all DPUs in a rank
have to finish their work before the results are collected. The
interval of time between the fastest and the slowest DPU must
be as small as possible.

As mentioned in III-C, the complexity of an alignment
between sequences A and B gives the following equation
estimating its workload:

W (A,B) = (m+ n)× width (3)

The workload of a DPU is estimated based on the sum of
all alignment it has to compute. The next step is to allocate
similar workload for each DPU. First the overall workload
is determined, then the average workload for each DPU is
computed. Finally a simple greedy algorithm is applied to load
every DPU with a workload near the average. If the number
of sets is large compared to the number of DPUs, this simple
algorithm provide a good load balancing while keeping pre-
processing low.

B. DPU program

1) Score computation: As stated in III-B, 3 matrices need
to be computed. However, to get the score (Hm,n) it is not
necessary to keep all the values of these matrices. The com-
putation of Hi,j , Di,j and Ii,j requires only the presence of
the neighborhood values Hi−1,j−1, Hi,j−1, Hi−1,j , Di, j − 1
and Ii−1,j . Thus, instead of storing 3 matrices, only 4 anti-
diagonals of size w (the width of the band) need to be updated:
the two previous anti-diagonals of H and one anti-diagonal
from the I and D matrices.

The memory footprint to compute the score of an alignment
between two DNA sequences is reduced to: 4 integer arrays
of size w that can fit inside the WRAM of each DPU.
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2) Traceback algorithm: This procedure aims to provide
the optimal alignment. It works on two steps: (1) it fill an extra
data structure, during the score computation, memorizing how
the optimal score has been reached; (2) it navigate through
this structure to extract the optimal path.

(1): The data structure is an array, called BT , of size (m+
n) × w. The ith line of BT represents the ith anti-diagonal.
Schematically, a cell of BT stores which neighboring cell of
H has contributed to compute the maximal score. This score
can come Hi−1,j−1, Ii,j or Di,j . This information is encoded
into 3 bits as follows: 2 bits indicates the origin cell, H with
match, H with mismatch, I , or D. 1 bit precise if, in case of
the origin cell is equal to I or D (gap), this is an opening or
an extension gap.

(2): From the BT array, the traceback generates a CIGAR
string that specifies the alignment between the two DNA
sequences. Starting from the BT cell attached to HN,M the
function output the suite of elementary operations (match,
mismatch, gap) that reflects the transformation of one sequence
into the other one. The function stop when the first anti-
diagonal is reached. As the CIGAR string is constructed from
the end, it must be reversed for proper use.

3) Multitasking: As explained in II-A to reach optimal per-
formance 11 tasklets must run in parallel at every clock cycle.
There are essentially two ways to parallelize an alignment:
(1) by performing multiple alignments simultaneously; (2) by
using multiple tasklets to compute a single alignment. The
first cannot be implemented with at least 11 tasklets due to
memory constraints. The latter can be rather inefficient as it
requires costly synchronisation between tasklets.

Here, an hybrid solution as been implemented: P pools
of T tasklets to simultaneously align P pairs of sequences.
Inside a pool, one tasklet acts as a master: it has the charge of
initializing the various buffers and the shared variables. Once
this is done, it synchronizes the other tasklets in its pool at
the granularity of the anti-diagonal computation. Each tasklet
computes a different slice of the 3 anti-diagonal matrices. This
parallelization scheme is possible because all the cells of an
anti-diagonal can be computed independently (IV-B1). The
traceback procedure being in essence a sequential process of
navigation through the BT table, it cannot be parallelized.

4) Assembly optimisation: As stated in II-A the ISA has
some specific instructions, those are not always exploited by
the compiler. In order to achieve better performance manual
optimization can be performed. Two exemples are: (1) using
instructions adapted to the application domain, i.e. the cmpb4
instruction a SIMD instruction able to simultaneously compare
4 bytes. This is particularly interesting when comparing DNA
strings. (2) Fused instructions that combine arithmetic or
logical operations together with control flow. Such instruction
performs operation on its operands and depending of the result
can jump to a predefined address.

Manual optimizations of the assembly code of the anti-
diagonal computations yield a 30% improvement.

V. EXPERIMENTATION

This section reports experimentations that have been con-
ducted on an UPMEM server of 256 GB of standard memory
plus 160 GB of PiM memory (40 ranks). The CPU processors
are two Intel Xeon 4215 housing 16 cores each running at a
top frequency of 2.7 GHz.

Two applications requiring intensive use of banded DP
algorithms have been selected in order to analyze the gain
provided by a PiM implementation. For both applications the
number of pool P is 6 and the number of tasklets T is 4.
Those numbers have shown good pipeline usage for both
applications (95% to 99%). The way data are dispatched,
as well as the way results are collected, depends on the
application and are managed by the host. We compare the
execution time with KSW2 library which provides a very
efficient CPU implementation of the Needleman & Wunsch
algorithm. KSW2 implements the Suzuki-Kasahara algorithm
[8] and is a component of minimap2 [5].

A. 16S RNA sequence comparison for phylogeny

The first experimentation aims to compute a distance matrix
used for phylogeny analysis. It consists in making a pairwise
sequence comparison between all the sequences of a 16S Ribo-
somal RNA sequence data set. For each pairwise comparison
the score is returned, the alignment (CIGAR) is not required.

A set of 16S RNA sequences have been extracted from
the NCBI bacterial databases (August 2022) keeping only
complete 16S sequences. The final data set contains 9557 16S
Ribosomal RNA sequences.

To compute the comparison matrix efficiently on UP-
MEM PiM, all DPUs compute the same number of cells.
The workload analysis shows that only a few DPUs have a
lower computational load and none are overloaded; a perfect
split would only improve performance by 5%. The data set
is fully distributed to all DPUs thus reducing pre-processing
and transfer footprint. Then, the indexes of the first cell of the
comparison matrix and the number of cell are sent to each
DPUs.

TABLE I
ACCURACY OF SCORE.

Static Adaptive

band width 128 256 512 128
Accuracy (%) 70 81 85 86

Table I report the accuracy for different sizes of the diagonal
band width. As it can be seen, the adaptive solution provides
the same accuracy as the static formulation with four times
fewer calculated cells. Accuracy is defined as the number of
results matching the KSW2 score without any bands out of
the total number of results.

Table II shows the execution time comparison between PiM
and CPU implementation. With the same accuracy, the PiM
implementation is 8.7 times faster than KSW2. The compute
unit represent either the number of cores for CPU or the
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number of DPUs for PiM. Execution time for PiM is reported
for 3 configurations: 10, 20 and 40 ranks (5, 10 and 20 DIMM
modules respectively).

TABLE II
COMPARISON OF COMPUTE TIME BETWEEN IMPLEMENTATIONS.

CPU DPU

Width 512 128 128 128 128
Compute unit 32 32 640 1280 2540
Time (sec) 5882 1855 2585 1333 678
Speedup 1 3.1 2.2 4.4 8.7

B. Long read comparison for consensus sequence

The second experimentation compares many different sets
of long reads before the construction of a consensus sequence.
In a set, each read (or portion of reads) is expected to come
from the same region of the genome. All possible pair in a set
are aligned and the alignment (CIGAR) is needed for all of
them. The objective is to compute a consensus sequence from
the alignments.

The dataset is a list of set from a Pacific Bioscience
sequencer and has 4814 sets of sequences with an average
size of 20 Kbp. Each set is composed of 10 to 30 sequences
that needs to be paired-aligned. In order to provide a realistic
and time-consuming benchmark, and to fit all DPU with a
substantial amount of data, the number of sets was quadruplet.
The sets are dispatch to the DPUs after estimating their load,
the goal is to send equivalent workload to all DPUs.

Table III details the accuracy for both static and adaptive
diagonal band width. Adaptive band provides great improve-
ment for retrieving the optimal path with smaller band width.

TABLE III
PERCENTAGE OF OPTIMAL PATH (CIGAR) RECOVERED.

Static Adaptive

Width 128 256 512 1024 128 256 512 1024
Accuracy (%) 29 62 87 96 85 93 96 99

Execution times are reported in table IV. It shows similar
results compared to V-A with a 8.4x improvement for DPU
implementation over the x86 optimized KSW2 library.

TABLE IV
COMPARISONS OF KSW2(STATIC BAND ON CPU) AND DPU(ADAPTIVE

BAND) ON EXECUTION TIME.

CPU DPU

Width 512 128 128 128
Compute unit 32 32 1280 2520
Time (sec) 2386 698 507 284
Speedup 1 3.4 4.7 8.4

VI. DISCUSSION

The main target of PiM is data intensive applications as each
DPU as its own bandwidth. Sequence alignment is generally

considered a memory-bounded. However, the analysis per-
formed with Vtune on the two use cases shows a high number
of instructions per cycle and few memory stalls. The analysis
does show a high number of memory operations (22%) which
seems to have no impact on the overall performances. This is
due to the fact that memory accesses are contiguous and do
not solicit caches.

Despite sequence alignment being cache friendly, UPMEM
PiM shows good performance against classical x86 architec-
ture. Long-read technology is steadily developing, as shown by
the introduction of the latest Illumina technology. As the error
rate improves, adaptive band becomes even more attractive
with a smaller bandwidth reducing the memory footprint. Our
implementation shows that the first generation of UPMEM
PiM can also accelerate cache-enabled applications, not just
memory-related applications. The next generation of PiMs
may prove to be even more effective for this task.
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