
Bloom Filters on UPMEM Data Processing Units

Abstract
Motivation. Bloom filters are a well-known probabilistic set data structure often used to compact
data. In the context of sequencing, algorithms may rely on them to handle huge volumes of reads and
perform computational analyses faster. Optimizing this underlying data structure, which is inherently
memory-bound, is thus a major challenge to accelerate further genomics applications.

Results. We design a C++ Bloom filter implementation on the UPMEM Processing-in-memory archi-
tecture. Our evaluation shows it provides interesting speedups compared to an efficient Bloom filter
implementation running on CPU. For instance, inserting and querying 100 million items in a 1 GiB
filter executes 2-3 times faster. We present the implementation challenges we tackled and leverage
our experience to discuss whether this type of data structure is a good fit for the UPMEM architecture.

TABLE OF CONTENTS

1 Introduction 2

1.1 Bloom filters . 2

1.2 Motivation . 3

2 Goal and Design Choices 4

3 Implementation Details 5

3.1 On the Host side . 6

3.1.1 Insertions . 6

3.1.2 Lookups . 7

3.1.3 Discussion and Challenges . 7

3.2 On the DPUs side . 7

3.2.1 Insertions . 8

3.2.2 Lookups . 8

4 Evaluation 8

4.1 Baseline . 8

4.2 Metrics and Benchmarks . 8

4.3 Results . 10

4.4 Traces and Discussion . 10

5 Conclusion 14

References 15

0 0 0 01 1 0 10 0 0 01 1 0 0 10 0 1 0

HASH FUNCTIONS

ITEM

FILTER

Figure 1: Hashing an item into a list of bit vector indexes

1 INTRODUCTION

Genomics applications deal with huge volumes of reads. Therefore, scientists often rely on compres-
sion as a preprocessing step. This permits to store data more easily and to run complex computa-
tional analyses faster. One way to produce compacted data is to rely on Bloom filters, a well-known
probabilistic set data structure.

In this report, we focus on this specific data structure and describe our implementation on the UPMEM
Processing-in-memory (PIM) architecture.

1.1 Bloom filters

Bloom filters [1] are a memory-efficient probabilistic set data structure. They support two operations:
(i) inserting an element and (ii) querying the presence of an element (respectively Listings 1 and 2).
A filter is a vector of bits of size m with all cells initialized to 0. It uses h uniform independent
hash functions to hash any element into a list of h indexes as illustrated in Figure 1. The insertion
operation sets the bits at the resulting indexes to 1. To query the filter, we look at the indexes
and return a positive if all corresponding cells contain a 1. However, the lookup answer should be
interpreted as either No or Maybe Yes. Hashing collisions can indeed lead to believe some elements
were inserted in the filter when they were not. The false positive probability is given by the following
formula, where n is the total number of elements inserted into the filter:

P[FP] ∼
(
1− e−

hn
m

)h

On the other hand, false negative are impossible: P[FN] = 0.

Listing 1: Basic Bloom filter insertion
void insert(const uint64_t item) {

for (int i = 0; i < h; i++) {
bloom[hash(item , i)] = 1;

}
}

Listing 2: Basic Bloom filter lookup
bool contains(const uint64_t item) {

for (int i = 0; i < h; i++) {
if (bloom[hash(item , i)] == 0) { return

↪→ false; }
}
return true;

}

A Bloom filter variant, denoted Cache (Listings 3 and 4), uses the idea of blocks to keep the h−1 last
hash indexes close to the first one as illustrated in Figure 2. Because a block is a lot smaller than the

GENOPIM PROJECT Page 2/15

0 0 0 01 1 0 01 1 0 00 0 0 0 00 0 0 0

HASH FUNCTIONS

ITEM

FILTER
h0

BLOCK

Figure 2: Using a block makes the Bloom filter more cache-friendly

HDF5

Memory-efficient de Bruijn graph

ATCGAAGGAC

FASTA

GATTCAGCAT

ATGATC
TCCAAC

GATTAGCATAC

FASTQ

GTATTCGCGT

GTCAGC
ATTGCA

Raw data
Plants, animals, bacteria, ...

SEQUENCING

1. Count k-mers (DSK)

4. Store branching nodes

2. Insert solid k-mers into a Bloom filter (Bloom)

3. Build the critical false positive set (cFP)

Many insertions

Many lookups

GATB CORE / BLOOM FILTER BASED

Key results

→ Compression (Leon)

→ Read correction (Bloocoo)

→ ...

GATB APPLICATIONS

Figure 3: The Genome Analysis Toolbox with de Bruijn graph using Bloom filters

whole filter, simpler hash functions can be used to speed-up the computations. This implementation
is more cache-friendly and thus executes faster, at the cost of a slightly increased false positive rate.

Listing 3: Cache Bloom filter insertion
void insert(const uint64_t item) {

h0 = hash(item , 0);
bloom[h0] = 1;
for (int i = 1; i < h; i++) {

h = h0 + (simple_hash(item , i) %
↪→ BLOCK_SIZE)

bloom[h] = 1;
}

}

Listing 4: Cache Bloom filter lookup
bool contains(const uint64_t item) {

h0 = hash(item , 0);
if (bloom[h0] == 0) { return false; }
for (int i = 1; i < h; i++) {

h = h0 + (simple_hash(item , i) %
↪→ BLOCK_SIZE)

if (bloom[h] == 0) { return false; }
}
return true;

}

In practice, programs can only manipulate bytes and thus need to rely on bitwise masking to update
individual bits. This could lead to race conditions if two threads set different bits within the same byte
at the same time. Therefore, we can derive variants of these implementations that rely on an atomic
write operation to perform insertions safely in a multithreaded environment.

1.2 Motivation

The Genome Analysis Toolbox with de Bruijn graph (GATB) [3] is an open source C++ library devel-
oped by the GenScale group from IRISA/CNRS. It provides a set of very efficient tools to analyze
NGS datasets and uses compact data structures to run with a very low memory footprint. The library
splits the process into two distinct parts, as illustrated in Figure 3:

GENOPIM PROJECT Page 3/15

1. The core module takes as input raw FASTA/FASTQ data and produces a memory efficient
representation of the de-Bruijn graph stored in a HDF5 file. The library provides several repre-
sentations. In particular, one of them relies on Bloom filters [2], and this is thus where we put
our focus in this work.

2. Tools take the graph as input and perform various tasks like compression, assembly, read error
correction, etc. The library provides a rich API to develop new tools on top of the core module.

To provide an exact graph representation despite the probabilistic nature of Bloom filters, the GATB
library computes an adjacent structure to keep track of critical false positives. More precisely, com-
puting the Bloom-based de-Bruijn graph executes the following steps:

Step 1: Count the abundance of all k-mers (DSK) [4].
Step 2: Insert the solid k-mers1 into a Bloom filter.
Step 3: Build the critical false positive set.
Step 4: Compute branching information and store complex nodes in a hash table.

Steps 2 and 3 perform respectively a lot of insertions and lookups at once. Improving the elementary
operations of Bloom filters when dealing with high volumes of data could thus speed-up significantly
the graph construction.

With this concrete application in mind, we detail our goals and design choices in the next section. We
then give technical details about our implementation on the UPMEM PIM architecture in Section 3.
We review the performances of the library we developed in Section 4. Finally, we summarize our
work and conclusions in Section 5. We also share some insights about the general characteristics of
the Bloom filters data structure and how our investigations expose them to be well-fitted or not for the
UPMEM PIM architecture.

2 GOAL AND DESIGN CHOICES

Our goal consists in developing a C++ Bloom filter library on the UPMEM PIM architecture. We target
a generic implementation where items are unsigned 64 bits integer. In the context of genomics, this
permits to insert k-mers up until k = 32.

We focus on optimizing performances for high volumes of data. In particular, we wish to speed-up
insertions and queries when dealing with a large input vector of items. The library still supports single
insertions and queries through wrappers2 but we expect them to be slow and irrelevant in the context
of PIM architectures. We target applications such as the construction of a Bloom-based de-Bruijn
graph presented in Section 1.2.

We report in Listing 5 the API of our library and give additional details about the different methods
available:

• Initialization. We allow only filters of size being a power of 2. This permits some significant
code optimization regarding modulo operations3. The number of threads parameter allows to
run the host part of the program in multithreaded. We use ranks as the granularity level to
manage a set of UPMEM Data Processing Units (DPUs). Ranks commonly contain 64 DPUs.

1We call solid the k-mers that appear more than a given threshold, usually 2 or 3. The goal of this process is to eliminate
low-abundance k-mers that usually result from sequencing errors.

2Single insertions and lookups embed the input item into a vector of size one and call the bulk methods.
3If x is a power of 2, then the modulo can be replaced with a bitwise operation: a mod x ≡ a & (x− 1).

GENOPIM PROJECT Page 4/15

• Insertions. As previously explained, we put our focus on the bulk operator that takes as input
a—preferably large—vector of items.

• Lookups. The bulk operator returns a vector of booleans that gives the result of all lookups in
the same order as the input vector of items.

• Weight. The weight is the proportion of bits set to 1 in the vector. This method is rarely used in
practice, but we believe it is interesting to design and implement a version on PIM nonetheless.

• Serialization. We provide methods to retrieve and restore the underlying bit vector so that
users can save the filter into a file and load it back later.

Listing 5: PIM Bloom filter C++ API
// Initialization
PimBloomFilter(size_t size2 , size_t nb_hash , size_t nb_threads = 1, size_t nb_ranks = 8)

// Insertions
void insert(const uint64_t& item)
void insert_bulk(const std::vector <uint64_t >& items)

// Lookups
bool contains(const uint64_t& item)
std::vector <bool > contains_bulk(const std::vector <uint64_t >& items)

// Weight
size_t get_weight ()

// Serialization
const std::vector <uint8_t >& get_data ()
void set_data(const std::vector <uint8_t >& data)

3 IMPLEMENTATION DETAILS

We now describe how we implemented Bloom filters on the UPMEM PIM architecture. First, we share
an overview of the general process. Then, we will dive into the details of each part: the host on one
side, the DPUs on the other side.

Instead of having one big filter in memory like we would have in a CPU implementation, we distribute
the data structure and work with a set of many smaller filters. Each DPU stores and manages 16
filters in their MRAM.

When one calls a method of the library, the host is is charge of sending the necessary inputs to the
DPUs. These consist of:

• A token. It indicates which method the DPUs will have to execute, for instance an insertion or a
query.

• (Optional) An array of items. Since the data structure is split into many filters, we insert items
into a specific fragment using a deterministic mapping. Each item is thus sent to only one DPU.

• (Optional) Other required parameters. For instance the size of the item array, or the number of
hash functions, the filter size, etc.

All the input arguments are packed into a single array to minimize the number of transfers between
the host and the DPUs.

GENOPIM PROJECT Page 5/15

a u f ev d k s
Input items

NO

Workers - OpenMP section

Get item

Compute dispatch (rank, DPU)

Get buffer

Buffer full?

Launch rank

Create new buffers
for rank

Insert item in buffer

Items remaining?

YES

YES

NO

Launch ranks with partially filled buffers

Wait for all ranks to finish

Output

Figure 4: Dispatching the items on the host side

3.1 On the Host side

We use mainly asynchronous calls to manage the set of ranks of DPUs. This allows a better workload
partition between the host and the DPUs to keep both busy as much as possible.

We focus on the details of the insertion and query functions only since they are more complex than the
others and are the most used in practice. Besides, they required a lot of iterations and optimization
to run efficiently. Most of host work consists of dispatching the items correctly to the set of DPUs. In
the case of queries, it also handles getting the results back from the DPUs and formatting the output
vector of booleans.

The approach we describe in the following sections is illustrated in Figure 4.

3.1.1 Insertions

We configure a set of W workers that execute in parallel on the CPU with an OpenMP section. We
partition the input items into W fragments of same size. Each worker reads its own fragment and
computes the mapping for each item. The latter is done with a 64 bits hash. We execute a modulo
on the upper 32 bits to obtain a specific rank, and then a modulo on the lower 32 bits to target a
specific DPU within this rank4. Once we know where this item should go, the worker inserts it in a
buffer dedicated to this DPU.

4In practice, modulo operations are significantly expensive when occurring repeatedly. We use a faster alternative that
replaces the modulo by a multiplication followed by a shift.

GENOPIM PROJECT Page 6/15

Buffers have a maximum size because of the limited memory we reserved in MRAM on the DPUs.
Therefore, it happens that a worker tries to insert an item into a buffer that is full. In this case, the
worker launches the execution of the whole rank with an asynchronous call, and creates a new set of
empty buffers for this rank. Several rounds are likely to be necessary to handle the entire input vector
of items.

Once the worker finished reading its items, it triggers the launch of all the remaining partially filled
buffers. We then wait for all the ranks to finish processing before returning.

3.1.2 Lookups

Querying the filter follows the same approach, but exhibits two main differences.

Because we need to output the lookup results in a specific order, we maintain additional buffers to
remember the index of items in the original vector. We could store the item and index at the same
place with a tuple but it would waste space since DPUs do not need this information. That is why we
keep it in a separate container.

Besides, we schedule an extra callback after the launch of a rank to transfer results back from the
DPUs MRAM to the host. The latter then write the results at the right place in the output vector using
the index buffers.

3.1.3 Discussion and Challenges

The dispatch approach we presented has two main parameters to tweak:

• The number of workers. The ideal is to have just enough workers to stack enough calls so
that DPUs remain busy most of the time. Around 6 workers was a good number in most of our
experiments.

• The maximum number of items in a buffer. The bigger, the less rounds are necessary. But the
bigger, the longer it takes to fill them and trigger launches. A size of 210 or 211 offered a good
balance in most of our experiments.

Regarding the host part, we encountered two main challenges when working on this implementation:

• Filling buffers is a very memory-bound process, as we could see using the VTune Profiler
software [5].

• We need to make sure all variables stay alive long enough since the DPUs can still execute calls
after the end of the parallel OpenMP section for workers. To this end, we store all buffers in
containers. We however need to have generous memory reservations to ensure no reallocation
ever happens. Otherwise this could invalidate some references given to the asynchronous DPU
callbacks.

3.2 On the DPUs side

We configure the DPUs to run 16 tasklets in parallel. As previously mentioned, each DPU contains
16 filters in its MRAM. Let us now consider what happens when the host supplied the necessary
input array and launched the execution. Similarly to the host part, we focus our explanations on the
two set operations of a Bloom filter.

GENOPIM PROJECT Page 7/15

3.2.1 Insertions

We partition the input array of items into 16 parts. Each tasklet reads its own part sequentially using
an intermediate cache array in WRAM. For each item, it computes a deterministic mapping to know
in which of the 16 filters it should go. We use a cheap 16 bits hash to this end. Once the mapping
identifier is computed, the tasklet locks the corresponding mutex in a pool of 16 mutexes. It then
performs the insertion in a Cache filter manner as detailed in Section 1.1. Because all the bits to set
are close to each other, we retrieve a small block of the filter starting at the first hash index in a cache
in WRAM. The tasklet performs all the write operations in this cache. It then commits the insertion by
writing the cache back in MRAM and releases the lock.

3.2.2 Lookups

Iterating over items works a bit differently for the lookups. Each tasklet will handle the queries for a
specific filter. It reads every input item, computes the deterministic mapping and performs the query
only if it corresponds to its identifier. After querying the filter, the tasklet writes the result in a cache of
integers common to all tasklets. Since they all update different cells (results are ordered exactly like
the input array of items), this does not require synchronization most of the time. We however need a
barrier to let tasklet 0 store the results in MRAM and reset the cache once it is full. Before doing so,
tasklet 0 compresses the data to store one result per bit. Compared to the sending of the input, this
divides the transfer size from the DPUs to the host by 64. This compression significantly improves
the overall execution time.

4 EVALUATION

We now share how we evaluate the performances of our implementation of Bloom filters on the
UPMEM PIM architecture.

4.1 Baseline

We compare our library to the best performing Bloom filter implementation of the GATB library: the
Cache filter as presented in Section 1.1. We consider its synchronized version and use it with 8
threads.

Since it only provides single insertions and lookups, we extend the class to add bulk operators. The
basic approach consists in looping over the input vector in parallel and applying the single operator
on each item. We can however design a better algorithm. By using buckets, we reorder the items to
gather those that will end up close to each other in the bit vector. This reordering takes some time
but permits to then do the actual insertions or lookups in a much more cache-friendly manner. In our
experiments, we notice this approach provides a significant speedup compared to the basic iterative
version (around 2 to 3 times faster).

We thus select the bucket-based synchronized Cache filter as our baseline in this report.

4.2 Metrics and Benchmarks

Since our goal consists in accelerating the elementary operations of Bloom filters, the main metric
for our evaluation is the elapsed time of each method. We implement a timer decorator to wrap each

GENOPIM PROJECT Page 8/15

function call to the filter interface and measure the elapsed time with the omp_get_wtime() method
from the OpenMP module.

Additionally, we consider the false positive rate metric. Given N items that we know were not inserted
into the filter, we compute the number of positive lookups we obtain by querying all of them. The false
positive rate is then:

FPR =
#<Maybe Yes>

N

As N increases, the false positive rate can yield a good approximation of the false positive probability.

Listing 6: Bloom filter benchmark
std::vector <uint64_t > get_seq_items(const size_t nb, const uint64_t start_offset = 0) {

std::vector <uint64_t > items(nb);
for (size_t i = 0; i < nb; i++) { items[i] = i + start_offset); }
return items;

}

// Creating vectors of items
std::vector <uint64_t > items = get_seq_items(nb_items); // Will be inserted
std::vector <uint64_t > no_items = get_seq_items(nb_no_items , nb_items); // Will not

// Creating filter (PIM or SyncCache)
auto bloom_filter = BloomFilterTimeitDecorator <PimBloomFilter <HashPimItemDispatcher >>(

↪→ bloom_size2 , nb_hash , nb_threads , nb_ranks);
// or
auto bloom_filter = BloomFilterTimeitDecorator <SyncCacheBloomFilter >(bloom_size2 , nb_hash ,

↪→ nb_threads);

// Inserting many items
bloom_filter.insert_bulk(items);

// Computing weight
auto weight = bloom_filter.get_weight ();

// Querying all inserted items in a random order
auto rng = std:: default_random_engine {};
std:: shuffle(std::begin(items), std::end(items), rng);
bloom_filter.contains_bulk(items);

// Querying non inserted items and computing false positive rate
auto lookup_result = bloom_filter.contains_bulk(no_items);
double fpr = (double) std:: count(lookup_result.begin(), lookup_result.end(), true) / no_items

↪→ .size();

We show the benchmark code we use in Listing 6. We measure the elapsed time of creating a new
empty filter, inserting many items, querying all the items inserted and computing the weight of the
filter. We then also query 100,000 items not inserted to get the false positive rate.

We perform all our executions with 8 hash functions as it is a quite usual value for this parameter. We
consider Bloom filter sizes ranging from 230 (125 MiB) to 233 (1 GiB). Regarding the number of items,
we run experiments with 10 million and 100 million, which are realistic numbers of solid k-mers we
could find in a set of reads. Finally, regarding the PIM implementation, we consider 6 and 8 ranks
(respectively 384 and 512 DPUs).

Hardware-wise, we run all the benchmarks on the same server with an Intel® Xeon® Silver 4215
CPU @ 2.5 GHz processor, 251 GB of DDR4 @ 2.4 GHz RAM, and a total of 40 UPMEM ranks
(2560 DPUs) available. The server runs on Debian 10 and uses version 2023.1.0 of the UPMEM
SDK.

GENOPIM PROJECT Page 9/15

4.3 Results

In this section, we report the results of our benchmarks. For all cases, we see a common trend
that the bigger the filter and the more items we insert / query, the better the speedup of the PIM
implementation. This is good news since we designed the latter specifically to deal with huge volumes
of data. We now comment the results for each function and metric:

Initialization. We see in Table 1 that the PIM implementation performs significantly faster than the
CPU one. Although the initialization is typically done only once, such a speedup can still be interesting
when using serialization and reloading previously saved data into a new filter.

Weight. In Table 2, we notice a huge speedup for the PIM implementation regarding the weight
function. The underlying algorithm, a bit count reduce, uses a very simple and efficient parallelization
scheme that fits the PIM architecture particularly well. Computing the weight of a filter has few interest
in practice, but these results provide an idea of the high performances gain we can obtain in these
types of situations.

Insertions. We notice in Table 3 a reasonable speedup when inserting items. The performances
gain is smaller than for previous methods, but still looks interesting, particularly when the size of the
filter increases significantly.

Lookups. Table 4 shows a similar trend for querying the presence of items, although the speedup
is smaller. In a typical CPU implementation, lookups are often cheaper than insertions. We however
notice the opposite here with the PIM implementation. Two aspects can explain this observation:

• To reorder the booleans and output the query results in the right order, we need to remember
the index of each item in the original input vector. In a CPU implementation, we can store the
item and the index at the same place with a tuple. But in the PIM implementation, we do not
need to send the indexes to the DPUs so we store them in a separate structure. This may be
more memory-bound.

• Secondly, we have additional memory transfers compared to insertions since we have to get
the results back from the DPUs MRAM. We compressed the data to optimize this phase but it
still takes a significant time overall.

Looking at the elapsed time metric, we see that the PIM implementation performs systematically
faster with 6 ranks rather than with 8 ranks. We believe this phenomena finds its roots in the way
we distribute Bloom filters on the DPUs. Because the hash functions are uniform, all the buckets to
transfer items fill at the same rate. With more ranks, there are more buckets to fill and it iterates over
more items to trigger launches. DPUs thus spend more time idling and waiting for work to do, which
gives an overall worse execution speed.

False positive rate. Table 5 reports similar false positive rates for both the PIM and CPU implemen-
tations.

4.4 Traces and Discussion

Using the dpu-profiling tool provided by UPMEM, we can monitor the calls to the UPMEM SDK and
get a timeline of the application execution. We show the traces we obtain for the insertions and the
lookups in Figure 5. The timeline splits the calls in 12 different threads, corresponding to the 6 workers
(top lines) and the 6 ranks asynchronous supervisors (bottom lines). Calls in the workers lines are
usually quite short since they simply schedule asynchronous transfers, launches and callbacks. The

GENOPIM PROJECT Page 10/15

size2 #items #ranks PIM (s) CPU (s) PIM Speedup

30 10000000 6 0.148 0.323 2.184
30 10000000 8 0.198 0.323 1.629
30 100000000 6 0.145 0.373 2.580
30 100000000 8 0.187 0.373 1.991
31 10000000 6 0.150 0.667 4.447
31 10000000 8 0.188 0.667 3.548
31 100000000 6 0.144 0.754 5.250
31 100000000 8 0.188 0.754 4.014
32 10000000 6 0.150 1.387 9.234
32 10000000 8 0.187 1.387 7.398
32 100000000 6 0.147 1.528 10.413
32 100000000 8 0.189 1.528 8.068
33 10000000 6 0.156 2.992 19.172
33 10000000 8 0.181 2.992 16.497
33 100000000 6 0.145 3.041 21.039
33 100000000 8 0.185 3.041 16.419

Table 1: Initialization

size2 #items #ranks PIM (s) CPU (s) PIM Speedup

30 10000000 6 0.022 3.595 166.430
30 10000000 8 0.012 3.595 308.322
30 100000000 6 0.022 3.713 171.696
30 100000000 8 0.011 3.713 326.371
31 10000000 6 0.043 6.764 158.825
31 10000000 8 0.023 6.764 298.625
31 100000000 6 0.044 6.731 153.327
31 100000000 8 0.023 6.731 294.135
32 10000000 6 0.085 12.759 150.920
32 10000000 8 0.044 12.759 290.824
32 100000000 6 0.085 13.462 159.237
32 100000000 8 0.044 13.462 309.406
33 10000000 6 0.169 27.344 162.277
33 10000000 8 0.086 27.344 317.524
33 100000000 6 0.169 26.757 158.614
33 100000000 8 0.085 26.757 313.476

Table 2: Weight

GENOPIM PROJECT Page 11/15

size2 #items #ranks PIM (s) CPU (s) PIM Speedup

30 10000000 6 0.122 0.228 1.872
30 10000000 8 0.122 0.228 1.868
30 100000000 6 0.759 1.536 2.024
30 100000000 8 0.713 1.536 2.154
31 10000000 6 0.122 0.271 2.231
31 10000000 8 0.118 0.271 2.296
31 100000000 6 0.767 1.582 2.063
31 100000000 8 0.730 1.582 2.168
32 10000000 6 0.123 0.340 2.767
32 10000000 8 0.121 0.340 2.815
32 100000000 6 0.769 1.791 2.328
32 100000000 8 0.724 1.791 2.474
33 10000000 6 0.123 0.399 3.247
33 10000000 8 0.118 0.399 3.388
33 100000000 6 0.781 2.411 3.088
33 100000000 8 0.724 2.411 3.329

Table 3: Insertions

size2 #items #ranks PIM (s) CPU (s) PIM Speedup

30 10000000 6 0.196 0.238 1.217
30 10000000 8 0.185 0.238 1.291
30 100000000 6 1.483 2.032 1.370
30 100000000 8 1.385 2.032 1.467
31 10000000 6 0.193 0.274 1.420
31 10000000 8 0.172 0.274 1.588
31 100000000 6 1.470 2.265 1.541
31 100000000 8 1.411 2.265 1.606
32 10000000 6 0.195 0.324 1.660
32 10000000 8 0.197 0.324 1.642
32 100000000 6 1.408 2.428 1.724
32 100000000 8 1.392 2.428 1.744
33 10000000 6 0.193 0.515 2.673
33 10000000 8 0.187 0.515 2.755
33 100000000 6 1.421 3.060 2.154
33 100000000 8 1.320 3.060 2.317

Table 4: Lookups

GENOPIM PROJECT Page 12/15

size2 #items #ranks PIM CPU

30 10000000 6 0.0000 0.0000
30 10000000 8 0.0000 0.0000
30 100000000 6 0.0026 0.0134
30 100000000 8 0.0145 0.0134
31 10000000 6 0.0000 0.0000
31 10000000 8 0.0000 0.0000
31 100000000 6 0.0001 0.0008
31 100000000 8 0.0006 0.0008
32 10000000 6 0.0000 0.0000
32 10000000 8 0.0000 0.0000
32 100000000 6 0.0000 0.0001
32 100000000 8 0.0000 0.0001
33 10000000 6 0.0000 0.0000
33 10000000 8 0.0000 0.0000
33 100000000 6 0.0000 0.0000
33 100000000 8 0.0000 0.0000

Table 5: False positive rate

actual operations occur in the bottom lines and we can see dpu_sync calls performed under the hood
that indicate when ranks are executing.

During the insertions, we see that the DPUs are almost always active once the first launch have been
triggered. The workers stack enough asynchronous calls to keep them busy and not waste time.
This timeline shows that our numerous refinements to the code paid off and that our implementation
is quite optimized. We believe accelerating the insertions further could only happen through one the
following means:

• Optimize further the DPU program, for instance by tweaking the assembly code. If we increase
the idle time of DPUs, we can then send more items in each bucket to fill the idling space and
hopefully reduce the total number of rounds.

• Find a way to trigger the first round sooner. But this may only delay the idling of DPUs to later
in the timeline and not impact the overall elapsed time.

• Experiment with significantly different ways of distributing the data and items to the DPUs.

When querying the filter, we have more idle time for the DPUs because of the additional callback.
Once the lookup results have been transferred from the DPUs to the host, the callback still has
to perform the reordering of elements in the result vector before returning. This delays the next
asynchronous operations and explains why we have some blank spaces in the trace. To optimize
the lookups further, we could end the callback right after the transfer and execute the reordering in
another thread or some available worker. This is however more complex to implement and would
require special care to make sure the data stays alive in the necessary scopes and do not lead to
expensive copies. It is unclear whether this would actually yield a significant improvement. In any
cases, lookups cannot be faster than insertions, which indicates a lower bound. We can only hope to
accelerate the lookups further by at most 35-45% given where the insertions currently stand. But it
could still be worth to investigate this path since querying a filter is probably the most used operation
in practice.

GENOPIM PROJECT Page 13/15

(a) Insertions

(b) Lookups

Figure 5: Traces of the PIM Bloom filter benchmark

5 CONCLUSION

In this work, we designed a Bloom filter implementation on the UPMEM PIM architecture. Our evalu-
ation shows it provides an interesting speedup compared to an efficient Bloom filter implementation
running on CPU. For a filter of size 233, our implementation turns out to be around 20, 3, 2, and
300 times faster for respectively an initialization, a bulk of insertions, a bulk of queries, and a weight
computation.

However, we obtain the larger performances gain for the less relevant functions of a Bloom filter. In
practice, the most used operations are insertions and lookups. This is where we had to proceed with
a lot of iterating and optimizing to get decent performances. In the end, these are only a few times
faster than our CPU baseline, which is already an interesting improvement although we were hoping
for more.

Because of how they work, Bloom filters are inherently very memory-bound. The use of uniform
hash functions indeed induce random memory accesses and a lot of cache misses, which harms the
performances on CPU. Another goal of this work was to investigate if this property would make them
a good fit or not for PIM architectures. Thanks to all the challenges we faced and tackled in this work,
we can now provide insights on this topic.

On the UPMEM PIM architecture, we believe the memory-bound property of Bloom filters remains
problematic for a few reasons. First, we cannot use an efficient cache in WRAM for the filters stored
in MRAM. With the cache filter approach, we can avoid direct MRAM accesses and retrieve a block
in a cache. This permits to efficiently set all the bits for the different hash indexes. However, we
cannot reuse this cache for the following items as the block will probably be completely elsewhere.
This induces a lot of transfers between the MRAM and the WRAM (at least one read transfer for each
item handled), just like it would cause a lot of cache misses on CPU. In the event that an efficient
sorting algorithm gets designed for the UPMEM PIM architecture in the future, we may be able to

GENOPIM PROJECT Page 14/15

reorder the items and minimize these transfers to accelerate the DPUs part further.

Another bottleneck lies in the distributed nature of our approach. Items are inserted into one of many
smaller filter. In order to ensure correctness and forbid false negative, we need to query a specific
fragment, i.e. the filter where the item would have been inserted. That is why we use a deterministic
mapping to dispatch each item to a specific rank and DPU within this rank. We however believe this
data dispatching scheme is not the best fit for the UPMEM PIM architecture. Because data needs
to be sent to a specific DPU, this leads to a lot a data copies and buffer preparation which is very
memory-bound. It would be much more efficient to send the next raw chunk of data to the first rank
available, but we cannot use this approach in the case of Bloom filters.

Finally, let us recall we focused in this work on implementing a rather generic Bloom filter library and
used an approach inspired by our experience with the GATB library. Different ways of distributing the
data on DPUs could yield better performances gains and would be interesting avenues of research.
Furthermore, better speedups could also be obtained by taking a step back and considering a whole
application from raw data to some computational result. Executing more processing on the DPUs
could make the dispatching and data transfers between the host and the DPUs more cost-efficient.
We believe investigating different scenarios that go beyond the sole use of the filters elementary
operations could be a very interesting area to explore in future work.

REFERENCES

[1] Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors. Communications of
the ACM, 13(7):422–426, July 1970.

[2] Rayan Chikhi and Guillaume Rizk. Space-efficient and exact de Bruijn graph representation
based on a Bloom filter. Algorithms for Molecular Biology, 8(1):22, September 2013.

[3] Erwan Drezen, Guillaume Rizk, Rayan Chikhi, Charles Deltel, Claire Lemaitre, Pierre Peter-
longo, and Dominique Lavenier. GATB: Genome Assembly & Analysis Tool Box. Bioinformatics,
30(20):2959–2961, October 2014.

[4] Guillaume Rizk, Dominique Lavenier, and Rayan Chikhi. DSK: k-mer counting with very low
memory usage. Bioinformatics, 29(5):652, January 2013.

[5] Ahmad Yasin. A Top-Down method for performance analysis and counters architecture. pages
35–44, March 2014.

GENOPIM PROJECT Page 15/15

	Introduction
	Bloom filters
	Motivation

	Goal and Design Choices
	Implementation Details
	On the Host side
	Insertions
	Lookups
	Discussion and Challenges

	On the DPUs side
	Insertions
	Lookups

	Evaluation
	Baseline
	Metrics and Benchmarks
	Results
	Traces and Discussion

	Conclusion
	References

