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Processing-in-Memory is an emerging technology:
● Integrate computational capabilities directly within the memory.
● Minimizes the need for data movement between memory and the CPU.
● It aims to improve both performance and energy efficiency.
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● Processing with memory
● Use memory for computation
● Ex:CASA (CAM based) [3]

Using-Memory
● Processing close to memory
● Add compute unit close to memory 

arrays
● Ex: SSD with read filtering [1]
● Ex: UPMEM Memory [2]

Near-Memory

What is PiM
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What is PiM: In Pictures



UPMEM PiM System [1]
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Up to:
● 40 Ranks
● 163 GB RAM
● 2560 Compute unit
● 40960 Threads

No DPU interconnection !
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The Memory
● WRAM: 64KB scratchpad
● IRAM: 4096 instructions
● MRAM: 64MB

The DPU:
● DPU: 350Mhz
● Custom ISA
● 16 Threads
● 11 Steps pipeline
● Direct WRAM access

The DPU
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Host: C, C++, Python, Java DPU: C, C++ (limited, no std::lib)

PiM Programming
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Host: C, C++, Python, Java DPU: C, C++ (limited, no std::lib)

PiM Programming

ETH Zürich: SimplePiM [1] - C

Institut Pasteur & IRISA: BPL - C++

[1] J. Chen et al, "SimplePIM: A Software Framework for Productive and Efficient Processing-in-Memory", PACT 2023 7



Sort Applications in Genomic Pipelines:

● K-mer Counting
● BAM File Sorting

Importance of Sorting Algorithms

● Fundamental of computer science.

Sorting Challenges in PiM:

● Directly sorting large arrays is impractical.

Area of research: Exploring Genomic Algorithms for PiM Architecture

8



Data Sorted data

DPU

DPU

DPU

Sort buckets

Merge on Host

[1] Deorowicz S. et al. KMC 2: fast and resource-frugal k-mer counting, Bioinformatics, Volume 31, Issue 10, May 2015

Solution to Sorting Challenges:

● Sort smaller buckets
● Merge them.

Algorithms Tested for Bucket Sorting:

● Quick Sort
● Heap Sort
● Radix Sort (used in KMC2 [1])

Divide into 
buckets

Sorting Strategies for PiM
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Dataset:

● 40960 buckets
● 500k 32 bits integers per buckets (2MB)
● ~80 Go

Systems:

● Intel Xeon 4216 (64 cores)
● 40 UPMEM PiM ranks

Benchmarks:

● In-house implementation
● Intel AVX2 quicksort

Analysis:

● Architecture usage
● Performance
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Comparison environment



CPU Analysis: Vtune

Speculation Bound Algorithms:

● Quick Sort and Heap Sort:
● Naive implementations (including C++ 

standard sort) are speculation bound.
● Utilizing AVX2 instructions eliminates this 

bottleneck for quick sort.

Memory Bound Algorithms:

● Radix Sort is inherently memory bound.
● Intel Quick Sort (AVX2).

Additional Information:

● CPU L3 Cache: 22MB.
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DPU Analysis

PiM Implementation:

● All implementations use manual cache to limit 
MRAM-WRAM transfers.

● Heapsort access patterns are more random.
● Radix sort’s final step is also random in nature.

PiM Analysis:

● Quick sort is compute bound on DPU.
● Both heap sort and radix sort are memory bound 

on DPU due to random memory accesses limiting 
caching mechanism.

● Host to PiM transfer overhead is small.
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● PiM is 1x to 4.2x faster for sorting buckets.

Performance comparison
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Benefits:

● UPMEM PiM can enhance speculation bound applications

Limitations:

● Not suitable for standalone sort acceleration.

Use of sorting in PiM:

● Can be integrated into more complex DPU applications without performance loss.

Conclusion
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