
Sorting Algorithms Using 
Processing-in-Memory

Meven MOGNOL
University of Rennes, IRISA, Inria, Genscale

Thesis Director: LAVENIER Dominique
Industrial Advisor: LEGRIEL Julien (UPMEM)



Processing-in-Memory is an emerging technology:
● Integrate computational capabilities directly within the memory.
● Minimizes the need for data movement between memory and the CPU.
● It aims to improve both performance and energy efficiency.

2
[1] Nika Mansouri Ghiasi et al. 2022. GenStore: A High-Performance in-Storage Processing System for Genome Sequence Analysis. ASPLOS '22
[2] Fabrice Devaux. The true processing in memory accelerator, 2019 IEEE Hot Chips 31 Symposium (HCS)
[3] Yi Huang et al. 2023. CASA: An Energy-Efficient and High-Speed CAM-based SMEM Seeding Accelerator for Genome Alignment. MICRO '23

● Processing with memory
● Use memory for computation
● Ex:CASA (CAM based) [3]

Using-Memory
● Processing close to memory
● Add compute unit close to memory 

arrays
● Ex: SSD with read filtering [1]
● Ex: UPMEM Memory [2]

Near-Memory

What is PiM



3
[*] Khan, A. A. et al, “The Landscape of Compute-near-memory and Compute-in-memory: A Research and Commercial Overview”, 2024, arXiv

What is PiM: In Pictures



UPMEM PiM System [1]

4
[1] Fabrice Devaux. The true processing in memory accelerator, 2019 IEEE Hot Chips 31 Symposium (HCS)

Up to:
● 40 Ranks
● 163 GB RAM
● 2560 Compute unit
● 40960 Threads

No DPU interconnection !



D
P

U
 P

ip
el

in
e In

st
ru

ct
io

n 
M

em
or

y
(IR

A
M

)
W

or
ki

ng
 M

em
or

y
(W

R
A

M
)

Main Memory
(MRAM)D

M
A

The Memory
● WRAM: 64KB scratchpad
● IRAM: 4096 instructions
● MRAM: 64MB

The DPU:
● DPU: 350Mhz
● Custom ISA
● 16 Threads
● 11 Steps pipeline
● Direct WRAM access

The DPU

5



Host: C, C++, Python, Java DPU: C, C++ (limited, no std::lib)

PiM Programming

6



Host: C, C++, Python, Java DPU: C, C++ (limited, no std::lib)

PiM Programming

ETH Zürich: SimplePiM [1] - C

Institut Pasteur & IRISA: BPL - C++

[1] J. Chen et al, "SimplePIM: A Software Framework for Productive and Efficient Processing-in-Memory", PACT 2023 7



Sort Applications in Genomic Pipelines:

● K-mer Counting
● BAM File Sorting

Importance of Sorting Algorithms

● Fundamental of computer science.

Sorting Challenges in PiM:

● Directly sorting large arrays is impractical.

Area of research: Exploring Genomic Algorithms for PiM Architecture

8



Data Sorted data

DPU

DPU

DPU

Sort buckets

Merge on Host

[1] Deorowicz S. et al. KMC 2: fast and resource-frugal k-mer counting, Bioinformatics, Volume 31, Issue 10, May 2015

Solution to Sorting Challenges:

● Sort smaller buckets
● Merge them.

Algorithms Tested for Bucket Sorting:

● Quick Sort
● Heap Sort
● Radix Sort (used in KMC2 [1])

Divide into 
buckets

Sorting Strategies for PiM

9



Dataset:

● 40960 buckets
● 500k 32 bits integers per buckets (2MB)
● ~80 Go

Systems:

● Intel Xeon 4216 (64 cores)
● 40 UPMEM PiM ranks

Benchmarks:

● In-house implementation
● Intel AVX2 quicksort

Analysis:

● Architecture usage
● Performance

10

Comparison environment



CPU Analysis: Vtune

Speculation Bound Algorithms:

● Quick Sort and Heap Sort:
● Naive implementations (including C++ 

standard sort) are speculation bound.
● Utilizing AVX2 instructions eliminates this 

bottleneck for quick sort.

Memory Bound Algorithms:

● Radix Sort is inherently memory bound.
● Intel Quick Sort (AVX2).

Additional Information:

● CPU L3 Cache: 22MB.

11



DPU Analysis

PiM Implementation:

● All implementations use manual cache to limit 
MRAM-WRAM transfers.

● Heapsort access patterns are more random.
● Radix sort’s final step is also random in nature.

PiM Analysis:

● Quick sort is compute bound on DPU.
● Both heap sort and radix sort are memory bound 

on DPU due to random memory accesses limiting 
caching mechanism.

● Host to PiM transfer overhead is small.

12



● PiM is 1x to 4.2x faster for sorting buckets.

Performance comparison

13



Benefits:

● UPMEM PiM can enhance speculation bound applications

Limitations:

● Not suitable for standalone sort acceleration.

Use of sorting in PiM:

● Can be integrated into more complex DPU applications without performance loss.

Conclusion

14


