Processing-in-Memory for Genol

Genome Matching with UPMEM Data Processing Units

Abstract

Motivation. As bacterial databases are growing exponentially, finding genes or mutations require
efficient and fast algorithms to perform approximate pattern matching of a query against a set of
genomes. ltis thus essential to assess the potential of modern processors and hardware accelerators
for such task. We focus in particular on the Processing-in-Memory accelerator from the UPMEM
company.

Results. We devise a proof-of-concept implementation on the UPMEM PiM architecture and com-
pare it to a CPU-only equivalent that uses SIMD instructions. Our evaluation shows that the PiM
program scales better as the database size increases, but suffers from the lack of vectorized instruc-
tions and fails to achieve significant speed-ups. Despite promising characteristics, this workload does
not appear as a good fit for this architecture.

TABLE OF CONTENTS

1 Introduction
2 Implementation Details
2.1 CPU-only Implementation
2.2 UPMEM PiM Implementation
3 Evaluation
3.1 System . .
3.2 Datasets. e
3.3 Results e

4 Discussion and Conclusion

N OO o a g e ~ 0 0 N

References

One Bloom filter
per genome in DB

Il

Hash
k-mers function
Input sequence AGTC (M) f Sum of bits Output
AGTCCG — GTCC 1 3 0—— NoYesNo
TCCG Filter

Rrioricooe rire
SlRrRrRrio rkik
R orior ool

Figure 1: Querying an input sequence against a database of genomes represented as Bloom filters

1 INTRODUCTION

As the volume of sequencing data grows exponentially, it is paramount to design fast and efficient
algorithms that fully leverage the capabilities of modern processors and hardware accelerators. In
this work, we consider the objective of performing approximate pattern matching of a query against
a set of genomes. This typically serves the purpose of finding genes or mutations within a database.

We consider the software COBS [1] that uses Bloom filters [3] to create a compact inverted index.
As illustrated in Figure 1, each genome in the database is represented as a bit set and constitutes
a column of a matrix. To query an input sequence, COBS performs lookups in the matrix to count
how many k-mers from the input appear in each genome of the reference. The implementation of this
computational step benefits from SIMD instructions to unpack the bits of each line and sum counters.
Finally, COBS filters the results and outputs the list of genomes from the database that obtain a score
above a user-defined threshold.

In its classic mode, COBS uses the same Bloom filter size for every genome in the database. The
software also proposes a second mode, called compact, where genomes can be represented as
Bloom filters of different sizes, which then requires to reorder the set of columns to organize the
database matrix in blocks. This alternative mode leads to reduced memory footprint and faster query-
ing times.

In this work, we consider the classic mode of COBS and investigate a modified querying procedure
where we also represent the input sequence as a Bloom filter. This facilitates the computation since
the result is equivalent to the multiplication of the input bit set by the database matrix. Our motivation
lies in the fact that this makes the memory access patterns more linear and thus reduces the amount
of cache misses. We perform two implementations: the first on CPU only, and the second using
the Processing-in-Memory (PiM) accelerator of the UPMEM company [4]. Our end goal consists of
gaining insights whether this application workload is fitted for the UPMEM PiM accelerator or not.

We start by sharing some implementation details in Section 2. Then, we present our experimental
setup and show our results in Section 3. Finally, we provide some concluding remarks in Section 4.

GENOPIM PROJECT — 07/2024 Page 2/7

One Bloom filter
per genome in DB

Bloom filter l, l, l,

oo 0 1010
k-mers fun:ciion/el 110 ‘
Input sequence AGTC @ 1 1 0 Sum of bits Output
AGTCCG —> G;ggG ’@ 00 1-%@—)1 3 0——> No Yes No
v 11010
0;{ 1111
1/i01 0
? 101

Figure 2: Representing the input sequence as a Bloom filter with k-mers as elements

2 IMPLEMENTATION DETAILS

We make the implementation in C++17. To build Bloom filters, we use only one hash function and
rely on the xxHash library’. We use the same size of 1 MB for all Bloom filters.

As showed in Figure 2, we first convert the input sequence into a Bloom filter. The computation
then becomes a matrix multiplication instead of a series of lookups. The final filtering step remains
the same, although we need to use a different threshold. In the original procedure, it consists of
keeping genomes that match for instance 80% of the input k-mers. With the new input representation,
because of collisions, the number of k-mers does not equal the number of ones in the Bloom filter.
So we use the latter instead, i.e. the weight of the input Bloom filter, to compute the thresholds for
filtering results.

The only parts that differ between the CPU and PiM implementations is how the matrix multiplication
is computed and the parallel structure adopted. We now give more details for both implementations.

2.1 CPU-only Implementation

In the CPU version, we use OpenMP to handle input queries in parallel.

To compute the results for one query, we rely on the Intel® Intrinsics. First, we initialize as many
counters as genomes in the database, represented by 32-bits integers and packed into vectors of
256 bits. Then, we iterate all the bits of the input Bloom filter and ignore all the zeros. If we find a
one, we retrieve the corresponding line in the database and process it as follows for each byte:

1. We use a parallel bit deposit instruction to convert the byte into 8 bytes that end up being either
zeros or one.

2. We execute an AVX2 instruction to extend these 8 bytes into 8 32-bits integers, i.e. a vector of
256 bits.

3. Finally, we sum this vector and the corresponding counters with another AVX2 instruction.

"https://github.com/Cyand973/xxHash

GENOPIM PROJECT — 07/2024 Page 3/7

https://github.com/Cyan4973/xxHash

i 56 genomes m WRAM 56 result counters
8 queries e
} 4 KB per tasklet 1.792 KB

o)

1B per line 7 B per line
=8 MB =56 MB i
8 lines

Atn N a—— { I
64 K lines (one per query)
per tasklet

- . queries = 0.256 KB genomes = 1.792 KB

8 M lines A A

r)
nesstonce 1 N N
lines at once
= 256 iterations
per tasklet

Figure 3: Organizing data in the MRAM and WRAM of DPUs

0 |
| |
| |
[|
[|
[|
| cache to read cache to read !
| |
[|
[|
[|
[|
[|

This process exhibits several characteristics that make it very efficient:

» One byte from the database contains information for 8 genomes, but these are all processed at
once thanks to vectorized instructions.

* Memory access patterns are linear and predictable.

» Branches are used only for reading the query, but not for the database, which limits the amount
of bad speculation in the micro-instructions pipeline.

2.2 UPMEM PiM Implementation

In the PiM implementation, we adopt the memory organization illustrated in Figure 3. In particular,
we split the database and dispatch the data once at the initialization to store 56 genomes per DPU.
One rank can thus contain up to 3584 genomes. During the computation, we broadcast the queries
to all DPUs, and handle 8 at once. Since each Bloom filter has a size of 1 MB, this structure fully
uses the 64 MB memory space of the MRAM. On each DPU, we partition the data and affect different
ranges of lines to each of the 16 tasklets running in parallel. The process executes as follows:

. Each tasklet own result counters in their own WRAM stack and zero-initializes them.
. Tasklets read their share of the data and perform the corresponding computations to write
results into their local counters.
3. Once all the tasklets are done with the computations, results are aggregated in parallel in the
result counters of the first tasklet.
4. Finally, the first tasklet write the end results in the MRAM for the host to retrieve them.

N —

When the host has grouped 8 queries into a batch of 8 Bloom filters, it broadcasts the data to all
DPUs and launches the execution. While the DPUs are running, the host computes the weights of
the 8 Bloom filters to prepare for the filtering step later on. Once all ranks have finished, the host
retrieves the results and proceed to the final filtering to get the end results.

To perform the computation on the DPUs, we leverage the sequential nature of memory access pat-
terns to use intermediate caches in WRAM as illustrated in Figure 3. Since we do not have vectorized
instructions on the DPUs, we perform the computation differently than the CPU-only implementation.
We rely on a bit scan reverse on 32 bits with the c1z instruction, and then reset the most significant
bit set with a mask and a XOR operation. We use this procedure in two nested loops: first for the
queries and second for the genomes. Given a query, if c1z finds a bit set in a database byte, it takes
in total 7 instructions to increment the corresponding result counter. We resort to inline assembly to

GENOPIM PROJECT — 07/2024 Page 4/7

use the clz instruction as efficiently as possible and directly jump to the next iteration if there are no
bits set.

3 EVALUATION

3.1 System

We execute our experiments on a server with an Intel® Xeon® Silver 4215 CPU @ 2.5 GHz processor
(Skylake architecture), 256 GB of DDR4 @ 2.4 GHz RAM, and 20 UPMEM DIMMs @ 350 MHz (which
corresponds to 40 ranks, i.e. 2560 DPUs, and a total of 160 GB of MRAM memory). The server
operates on Debian 10 and uses version 2023.2.0 of the UPMEM’s SDK.

3.2 Datasets

We consider a subset of the 661k collection from [2] that contains bacteria genomes obtained by
assembling sequencing data from the European Nucleotide Archive.

In particular, we use 4000 genomes from the Acinetobacter baumannii bacteria. We select 3584
genomes to compose the reference database, and we pick a contig from each of the remaining
assemblies to compose a dataset of 416 queries. The reads in the latter have a size between 9k and
1.4M nucleotides, with an average of 329k.

Given the way we implemented the matching, the database of 3584 genomes fits perfectly in one
rank of DPUs. To simulate a bigger database, we duplicate the same 3584 genomes to fill more
ranks, and we measure the database size in terms of number of ranks.

3.3 Results

We execute the matching of the 416 queries with both implementations and report in Figure 4 the
elapsed time for a varying number of ranks. Additionally, we plot a linear interpolation to estimate the
trend for up to 40 ranks.

We see that the CPU-only implementation, which runs with 32 threads, is very fast but gets sig-
nificantly slower as the database size increases. This is consistent with each thread getting more
computations to execute.

On the other hand, the PiM implementation gets only slightly slower with more ranks. Using more
ranks means running more processing units in parallel, so the computational cost remain the same
no matter the size of the database. The slight slowdown is thus due to the data transfers between
the host and the DPUs that get more numerous, in particular the broadcasting of the queries. This
implementation is however a lot slower than the CPU-only version at first because it does not benefit
from vectorized instructions. The bit scan procedure we use on DPUs cannot compete with AVX2
instructions.

Besides, with the help of the performance library from the UPMEM’s SDK, we measure that the DPUs
pipeline is full at 99.2%. There is thus very little stalling on memory accesses, and the execution
appears rather compute-bound.

In the end, the interpolation shows the PiM implementation would become faster than its counterpart
once the database exceeds a size of 23 ranks. Even with a database of 40 ranks, the maximum that

GENOPIM PROJECT — 07/2024 Page 5/7

250 - \o
QO

1.40x faster 1.55x faster
200 A 1.13x slower

2.07x slower
14.96x slower

150 A R

—o—0 ;
UPMEM PiM

100 +

Execution time of 416 queries (s)

50

0 5 10 15 20 25 30 35 40
Database size in terms of number of ranks

Figure 4: Performances of the CPU-only and UPMEM PiM implementations

can fit on the 20 UPMEM DIMMs of our server, the PiM implementation would only be 1.55 times
faster.

4 DISCUSSION AND CONCLUSION

In this report, we considered the application of performing approximate pattern matching of a query
against a set of genomes. In particular, we focused on the case of the COBS software [1]. We
explored an alternate procedure by compacting the input sequence into as a Bloom filter, with the
end goal of investigating whether this approach could benefit from the UPMEM PiM technology. This
workload exhibits indeed several characteristics that make it a promising candidate for this architec-
ture:

» The computation can be easily fragmented into small independent tasks.

* Memory access patterns are linear, which means we can easily leverage the WRAM to cache
data from the MRAM.

* Queries are broadcasted to all ranks, so the orchestration is simple and lead to balanced work
across all processing units.

We performed a proof-of-concept implementation on the PiM architecture, and compared it to a CPU-
only version that uses SIMD instructions. Results show the PiM implementation scales better with
the database size. Allocating more ranks to increase the available memory space indeed shows little
impact on the execution time. The computation duration remains the same, and the slight slowdown is
due to the additional data transfers between the host and the DPUs. However, the base computational
time is much slower than the CPU-only implementation. Through interpolation, we estimated that the

GENOPIM PROJECT — 07/2024 Page 6/7

PiM implementation would be faster only when the database size exceeds 23 ranks, with a potential
speed-up of 1.55 times at 40 ranks.

These results indicate this workload may not be the best fit for the UPMEM PiM architecture as it
seems unlikely to obtain significant speed-ups. The main reason lies in the fact that the DPUs do not
have vectorized instructions to unpack bits and sum several values at once. Instead, we have to rely
on a bit scan approach that is less efficient. Overall, the workload seem more compute-bound than
memory-bound, so it may be a better fit for other hardware accelerators such as GPUs or FPGAs.

In case the UPMEM PiM architecture gets new instructions that help to accelerate the computation,
we may revise our conclusions. We indeed believe that the ability to scale with little overhead is
promising, and that the potential of the PiM approach for energy savings need to be investigated
further.

REFERENCES

[1] Timo Bingmann, Phelim Bradley, Florian Gauger, and Zamin Igbal. COBS: a Compact Bit-Sliced
Signature Index, July 2019. arXiv:1905.09624 [cs].

[2] Grace A. Blackwell, Martin Hunt, Kerri M. Malone, Leandro Lima, Gal Horesh, Blaise T. F. Alako,
Nicholas R. Thomson, and Zamin Igbal. Exploring bacterial diversity via a curated and search-
able snapshot of archived DNA sequences. PLOS Biology, 19(11):@3001421, November 2021.
Publisher: Public Library of Science.

[3] Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors. Communications of
the ACM, 13(7):422—426, July 1970.

[4] Fabrice Devaux. The true Processing In Memory accelerator. In 2019 IEEE Hot Chips 31 Sym-
posium (HCS), pages 1—24, August 2019. ISSN: 2573-2048.

GENOPIM PROJECT — 07/2024 Page 7/7

	Introduction
	Implementation Details
	CPU-only Implementation
	UPMEM PiM Implementation

	Evaluation
	System
	Datasets
	Results

	Discussion and Conclusion
	References

