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Abstract. Processing-in-Memory (PiM) is a novel computing paradigm
for reducing data movements between memory and processing units, and
thus minimizing energy consumption. PiMs are particularly well-suited
to data-intensive applications, where traditional systems are often lim-
ited by memory bandwidth. Genomics is a representative example of such
a domain, involving massive datasets and repetitive access patterns. In
this paper, we evaluate the energy efficiency improvements achieved by
running several genomic algorithms on a PiM-based system. Our ex-
periments focus on realistic workloads and highlight the challenges and
opportunities of parallelizing genomic tasks for PiM. The most signifi-
cant gains are observed in large-scale database search applications, which
naturally map to the parallel structure of PiM and benefit greatly from
reduced data movement.

Keywords: Processing-in-Memory · Parallelism · Power consumption ·
Genomics

1 Introduction

Computer applications have become ubiquitous in all aspects of our daily lives,
from communication, entertainment, and commerce, to scientific and medical
domains. This ubiquity comes with a fundamental shift in the nature of these
applications: they are no longer primarily focused on computation, but rather
on data manipulation.

This evolution presents significant technological challenges. Traditional com-
puter architectures, such as the Von Neumann model developed in the 1940s, are
increasingly ill-suited to the demands of modern computing. By separating the
processing units (CPUs) from memory, the Von Neumann architecture proved
highly efficient for decades, especially in tasks involving extensive data reuse,
like matrix multiplication, where data read from memory could be reused many
times in complex calculations. However, this model is no longer well adapted to
the performance requirements of contemporary applications.



2 M. Mognol et al.

Data-centric applications often involve less regular memory access patterns,
with simpler computations and limited data reuse. This diminishes the effective-
ness of cache hierarchies and prefetching mechanisms. As a result, performance
degrades significantly not because processors lack computing power, but because
they spend an increasing amount of time waiting for data. This phenomenon is
known as the memory wall [1].

The memory wall refers to the growing performance gap between processors,
whose speed and capabilities have improved dramatically over the past decades,
and memory systems, whose latency and bandwidth have not progressed at the
same rate. This asymmetry results in processors being chronically underutilized,
as they wait for data to be transferred from main memory. The energy cost
of these data transfers is also significant, often hundreds of times greater than
that of arithmetic operations on the same data. For example, adding two 32-bit
floating point numbers costs around 1 picojoules, while accessing just one of
those numbers in DRAM consumes more than 1000 picojoules [2].

To address these limitations, the Processing-in-Memory (PiM) paradigm
emerged [3]. The core idea of PiM is to move processing closer to the data
by integrating computation units directly into memory components. This model
significantly reduces data transfers between memory and processor, increases
effective bandwidth, lowers latency, and above all, decreases overall energy con-
sumption. PiM is not intended to replace traditional processors but rather to
offer a complementary solution, particularly well suited to massively parallel
tasks and localized processing on large datasets.

Among the practical industrial initiatives in this area, the French company
UPMEM offers an innovative PiM solution based on integrating small processing
cores, called DPUs (Data Processing Units), directly into DRAM memory chips
[4]. These units can execute processing algorithms directly on the data stored
within their own memory segment, thereby avoiding costly transfers to the cen-
tral processor. UPMEM’s technology enables massive parallelism and can be
integrated into standard servers, providing a pragmatic solution for data-heavy
applications.

This article builds on this technological innovation and aims to concretely
evaluate the energy gains enabled by PiM in a particularly data-intensive field:
genomics. With the democratization of sequencing technologies and the rapid
drop in costs, the volume of genetic data being produced has exploded. Pro-
cessing this data, although not always requiring extreme computational power,
involves complex tasks such as sequence comparison, database searching, and
genome assembly. These operations are inherently data-intensive, involve many
memory access and need limited arithmetic operations, making them ideal can-
didates for execution on PiM architectures.

As part of the European BioPIM [20] and GenoPIM [21] projects, several
bioinformatics algorithms have been adapted and parallelized to run on UP-
MEM’s PiM architecture. This work presents the experimental results obtained
from these applications, highlighting the energy savings achieved.
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2 PiM architecture

As stated before, Processing-in-Memory architectures aim to address the inher-
ent limitations of classical von Neumann systems by bringing computation closer
to memory. This proximity reduces data transfers, improves effective bandwidth,
and decreases energy consumption. Two main PiM architecture types are com-
monly identified: in-memory architectures and near-memory architectures [9].
These approaches differ in how closely the processing units are integrated with
the memory subsystem.

2.1 In-Memory vs. Near-Memory Architectures

In-memory architectures represent the most radical form of the PiM paradigm.
In this configuration, the computing elements—often simple logic gates or basic
arithmetic units—are directly embedded inside memory cells, typically within
DRAM or SRAM arrays. This extreme co-location enables data to be processed
without physically moving it, effectively eliminating memory transfers. The key
advantage of this model is its extremely low latency and minimal energy con-
sumption. However, the tight integration of logic into memory arrays imposes
significant constraints on memory density and fabrication complexity. As a re-
sult, in-memory PiM is often limited to specialized operations such as bitwise
logic, counting, or simple vector arithmetic.

By contrast, near-memory architectures adopt a more modular strategy.
In these designs, processing units are placed close to the memory, but not within
the memory arrays themselves. Typically, they reside on the same die or memory
module (e.g., DIMMs). This approach supports more complex processing units,
such as full RISC cores, while still maintaining low latency and high bandwidth
thanks to tight coupling with the memory. While energy savings are generally
smaller than those of in-memory PiM, near-memory architectures offer better
programmability, greater architectural flexibility, and compatibility with existing
fabrication processes.

2.2 The UPMEM PiM Architecture

Among the most advanced industrial realizations of the near-memory paradigm,
the architecture developed by the French company UPMEM offers a compelling
and functional implementation. It is based on a hybrid Processing-in-Memory
model integrated into standard DDR4 DRAM modules, allowing seamless com-
patibility with x86 servers as a drop-in replacement for conventional DIMMs.

The UPMEM PiM module adopts a dual-rank architecture, with each rank
containing eight DRAM chips, for a total of 16 chips per module (cf fig. 1) . Each
chip is structured into eight independent memory banks of 64 MB, resulting
in an overall capacity of 8 GB. What sets this module apart from traditional
memory architectures is the integration of Data Processing Units (DPUs) that
are lightweight RISC processors embedded near the memory arrays, one per
memory bank. This results in 128 DPUs per module, each associated with a



4 M. Mognol et al.

Fig. 1. Server with PiM DIMMs.

dedicated 64 MB local memory bank, referred to as Main RAM (MRAM) in
UPMEM’s terminology.

Each DPU is a general-purpose, energy-efficient core, capable of running up
to 16 hardware threads (tasklets) concurrently. This high level of parallelism en-
ables efficient in-memory data processing, particularly well-suited for workloads
involving massive data sets and localized computation. The triadic instruction
set architecture (ISA) implemented on the DPUs is specifically optimized for
control flow and branching. Furthermore, DPUs operate independently, with-
out any interconnection, reinforcing their role as autonomous, parallel workers
within the memory system.

By relocating computation directly to the memory subsystem, this architec-
ture drastically reduces data movement between memory and CPU, which is
one of the primary causes of energy inefficiency in conventional systems. As a
result, memory bandwidth usage drops, the host CPU is relieved of massively
parallel or repetitive tasks, and overall system energy efficiency improves. The
CPU retains the role of orchestrator, coordinating task dispatching and global
execution flow, while the DPUs perform distributed, fine-grained computation
independently.

UPMEM offers a dedicated development environment to harness the full po-
tential of its PiM architecture. Based on a heterogeneous computing model, the
host CPU manages and communicates with DPUs, which execute data-parallel
tasks using C-based kernels. The environment includes an LLVM-based compiler
toolchain, a runtime API, and debugging tools. DPUs access local MRAM and
can perform efficient data transfers with the host. Execution typically involves
initialization, kernel execution, and result retrieval. UPMEM also provides tools
for profiling and power monitoring, helping developers optimize application per-
formance and energy efficiency on PiM-enabled systems.
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2.3 Fine-grain parallelism challenge

While Processing-in-Memory architectures such as UPMEM’s offer promising
performance and energy efficiency gains, they also introduce a major program-
ming challenge: scaling applications to thousands of DPUs, each capable of run-
ning 12 to 16 concurrent tasklets. Achieving optimal performance requires fine-
grain parallelization, where the application must be decomposed into tens of
thousands of lightweight threads. This level of concurrency demands not only
efficient workload distribution but also careful management of memory access
patterns and synchronization. Designing algorithms that can leverage such mas-
sive parallelism remains an open and active area of research, especially for irreg-
ular and data-intensive applications.

3 Experimental Setup

This study aims to assess the energy savings enabled by Processing-in-Memory
architectures through the implementation and parallelization of several algo-
rithms drawn from the field of genomics, a representative class of data-intensive
applications. This section presents the hardware platform used for experimen-
tation, describes the various programs selected for the evaluation, and outlines
the methodology used to calculate energy savings.

3.1 Hardware

On the hardware side, we run all benchmarks on the same server with an Intel®
Xeon® Silver 4215 processor (16 hyper-threaded cores) at 2.5 GHz (Skylake
architecture), 256 GB DDR4 RAM at 2.4 GHz and 20 UPMEM DIMMs at 350
MHz (corresponding to 40 ranks, or 2,560 DPUs, and a total of 160 GB MRAM
memory). The server runs under Debian 10 and uses version 2023.2.0 of the
UPMEM SDK.

To evaluate energy consumption, we connected a power meter that samples
power consumption of the server every 10 milliseconds. The wattmeter comes
from AdecWatts [18], a company that designs professional equipment for mea-
suring energy consumption. The measurement accuracy error rate is less than
1%, which is more than sufficient for our purposes. This device provides an ac-
curate trace (from an USB port) of the server’s energy consumption over time,
as shown in Figure 2. From this trace, the average energy consumption of an
application execution can be calculated: it is computed as the product of its
execution time with its average power consumption.

3.2 Genomic algorithms

The algorithms analyzed in this study originate from the field of genomics. Their
parallelization on a UPMEM server was carried out as part of the BioPIM [20]
and GenoPIM [21] projects. All evaluations were performed under real usage



6 M. Mognol et al.

Fig. 2. Example of the trace of the server’s energy consumption over time

conditions and should not be considered estimations. A selection of algorithms
with diverse characteristics, particularly in terms of memory access patterns,
was made in order to assess their impact from an energy efficiency perspective.
The algorithms evaluated are the following:

– Sorting. In genomics, k-mer counting represents a fundamental computa-
tional task. K-mers are short nucleotide sequences of length k, extracted from
DNA sequences, and serve as the foundation for constructing more complex
data structures widely used in genomic algorithms. The k-mer counting pro-
cess relies heavily on sorting algorithms, whose parallel implementations have
been evaluated in this study.

– Compression of sequencing data. Sequencing costs have been steadily
decreasing, while throughput capabilities have increased proportionally. As
a result, the volume of sequencing data to be stored continues to grow, high-
lighting the need for highly efficient storage solutions. Given the frequent use
of compression and decompression in genomic workflows, these operations
need be highly optimized.

– Mapping. Mapping involves identifying the occurrence of short sequences,
typically a few hundred base pairs, within reference genomes that are several
orders of magnitude larger. Although computationally intensive, this process
is routinely employed in a wide range of genomic applications, particularly
within the healthcare domain.

– Sequence Comparison. Sequence comparison is another essential task in
genomics, aimed at computing distances between two or more DNA or pro-
tein sequences. It is a core component of numerous bioinformatics pipelines
and often constitutes a major computational bottleneck due to the high al-
gorithmic complexity involved.
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– Protein database search. Protein database search facilitates the identifi-
cation of relationships between unknown sequences and known genes by de-
tecting significant sequence similarities. This task is routinely performed by
biologists as part of genomic and proteomic workflows. Among bioinformat-
ics applications, database search is particularly well suited to Processing-in-
Memory (PiM) architectures. In this paradigm, the database is permanently
stored in memory, and query sequences are broadcast across all DPUs, each
of which independently searches for relevant similarities and returns the cor-
responding results.

3.3 Evaluation of the energy gain

Energy gains are calculated as the ratio of the energy consumption of the refer-
ence software to that of its corresponding PiM implementation. Both implemen-
tations process the same dataset and produce identical or comparable results.
They are also executed on the same server. The reference software is run in
parallel, utilizing all available cores whenever possible.

When the server is in idle mode—meaning no user applications are run-
ning—it still consumes a significant amount of power, approximately 410 Watts
in this case. While this may seem surprising, such idle consumption is consistent
with findings from other studies on the topic [10].

To accurately assess the energy savings, it would be necessary to measure soft-
ware reference power consumption without PiM modules. The UPMEM server
contains 20 modules (40 ranks). When these modules are not in use, according
to UPMEM designers, the power consumption per module is around 5 Watts.
We can therefore estimate that the energy consumption of this server without
PiM components, and when no user application is running, is about 310 Watts
(410 - 20 × 5). This estimate is in line with the study published in [5]. Similarly,
when the number of PiM modules used is less than 20, the idle power of unused
PiM modules must be subtracted.

Hence, from real measurements on our 20 PiM DIMM server, the energy gain
(EG) can be computed as follows:

EG =
ETREF × (PWREF − 20× PWPD)

ETPiM × (PWPiM − (20−K)× PWPD)

PWPD Estimated power of a PiM module in idle mode (5 Watts)
K Number of PiM modules used
PWREF / ETREF Average power measured / Exec. time of reference software
PWPiM / ETPiM Average power measured / Exec. time of PiM software

The numerator represents the energy consumed on a server without PiM
modules. The denominator represents the energy consumed on a server equipped
with K PiM modules.
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4 Results

4.1 Sorting

Three sorting algorithms (Quick Sort, Heap Sort, and Radix Sort) were evalu-
ated. The input array is partitioned into sub-arrays, each assigned to a DPU
tasklet for local sorting, ensuring balanced workload distribution. Following the
local sort, the sub-arrays are merged to produce the final sorted output. Since
the only variation between the CPU and PiM implementations lies in the lo-
cal sorting phase, the benchmark focuses exclusively on this step. Each tasklet
processes a sub-array of 512K 32-bit integers. With 16 tasklets per DPU, this
results in 8 million integers sorted per DPU, and scales up to sorting an array
of 20 billion elements in total.

The performance of the PiM implementations is benchmarked against their
CPU counterparts, i.e. three state-of-the-art implementations. For Quick sort,
the Intel AVX-optimized version [23] is considered. For Heap sort, we designed an
home made optimized software. For Radix sort, an optimized parallel version,
called PARADIS [16], have been used. The following table reports the mean
consumption in Watts together with the energy saving. Execution times (in
second) are indicated in parentheses.

CPU PiM Energy Speed
32 threads 40 ranks Gain Up

Quick 527 W (21.2 sec.) 861 W (20.5 sec.) 0.51x 1.03x
Heap 503 W (169.8 sec.) 847 W (122.3 sec.) 0.66x 1.38x
Radix 666 W (31.1 sec.) 821 W (24.5 sec.) 0.87x 1.26x

These results clearly demonstrate that implementing this type of computa-
tion on PiM offers no added value, either in terms of processing speed or energy
efficiency. This can be attributed to the availability of highly optimized imple-
mentations of sorting algorithms that take advantage of (1) the efficient SIMD
instructions available on modern processors; (2) the exploitation by cache mem-
ories of the locality of data.

4.2 Compression of sequencing data

We selected Genozip [14] as the reference software, given its status as one of
the leading tools for efficient and fast compression of sequencing data. Its coun-
terpart, MiMyCS [15], was specifically developed to leverage PiM architectures.
However, only a portion of the compression algorithm has been offloaded to PiM,
specifically the part that is both highly parallelizable and the most computation-
ally intensive.

The dataset used for compression originates from a whole genome sequencing
project of Homo sapiens, obtained through the Illumina NovaSeq 6000 technol-
ogy (SRR14724533). This dataset is accessible for download on the European
Nucleotide Archive browser [8].
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Genozip was executed in fast mode and allocates 1.1 threads per core in order
to maximize usage of all available cores. In this configuration, it achieves a com-
pression rate comparable to that of MiMyCS. For both software applications, a
reference genome is employed to ensure optimal compression. In this experiment,
we utilized the GRCh38 reference human genome.

To compress the dataset corresponding to human sequencing data, MiMyCS
requires only 8 ranks of PiM memory out of the 40 available. The following table
presents the average power consumption and execution time for both implemen-
tations.

CPU PiM Energy Speed
35 threads 8 ranks Gain Up

526 W (231 sec.) 525 W (162 sec.) 1.4x 1.4x

MiMyCS demonstrates slightly higher speed and lower power consumption
than its counterpart. The increase in the number of ranks does not translate into
higher speed or energy savings, as the bottleneck here comes from accessing the
data from disk. Compression is nearly performed at maximum disk bandwidth.

4.3 Mapping

Bowtie2 [11], a state-of-the-art mapping tool, serves as the CPU reference imple-
mentation. In this context, millions of sequencing reads (short DNA fragments)
are aligned against a reference composed of one or more genomes.

To evaluate mapping under different conditions, two metagenomic datasets
are employed, each representing a distinct mapping scenario: low and high map-
ping rates. The first dataset, originates from the TARA Oceans expedition
and includes sequencing reads along with corresponding Metagenome-Assembled
Genomes (MAGs) used as references. Due to the extensive microbial diversity
in marine environments, this dataset represents a low-mapping scenario, where
only a small proportion of reads align to any given reference genome. The sec-
ond dataset, UHGG (Unified Human Gut Genome), is derived from the Human
gut microbiome. In this case, reads from a single individual are mapped against
thousands of bacterial genomes. The relatively low genetic divergence results
in a high-mapping scenario, characterized by a large proportion of successful
alignments.

CPU PiM Energy Speed
32 threads 40 ranks Gain Up

TARA 523 W (144 sec.) 504 W (46 sec.) 2.7x 3.1x
UHGG 695 W (375 sec.) 540 W (136 sec.) 3.0x 2.8x

In both cases, the PiM implementation is faster and provides significant en-
ergy gain. However, a closer look at the profiling shows that DPUs are not being
used to their full potential [17]. Mapping is a relatively fast process which, in



10 M. Mognol et al.

this case, induces fast execution times compared to the time taken for exchanges
between the host processor and the PiM memories.

4.4 Sequence comparison

Performance evaluation was conducted through a comparative analysis with a
multi-threaded CPU implementation based on OpenMP, obtained from the min-
imap2 GitHub repository [22]. This implementation, which shares components
with the KSW2 library [6], is vector-optimized using SSE instructions. The ref-
erence software is MiniMap2 [7].

Two real data sets of long DNA sequences were used. The first dataset con-
sists of 9,557 16S ribosomal RNA sequences, extracted from the NCBI bacterial
database (August 2022). The processing task is to perform all-to-all sequence
comparisons, which is a prerequisite step for constructing a phylogenetic tree.
The second dataset comprises 38,512 sets of PacBio DNA sequences. Each set
contains between 10 and 30 similar sequences derived from the same genomic re-
gion. These raw sequence sets are processed to obtain the most probable genomic
sequence in that region. The first step is to perform all-against-all alignments.
The second step calculates a consensus sequence based on the alignments pro-
vided by the first step. The benchmark only takes into account the first step.

CPU PiM Energy Speed
32 threads 40 ranks Gain Up

16S 484 W (5882 sec.) 832 W (632 sec.) 4.3x 9.3x
PacBio 433 W (4044 sec.) 800 W (505 sec.) 3.3x 8.0x

As we can see, parallelizing the process of comparing long DNA sequences
on a PiM architecture brings significant energy savings, while also providing a
significant acceleration factor. The calculations performed in each DPU are con-
sistent and independent of each other. Memory exchanges are therefore greatly
reduced, with the main processor only orchestrating the calculations.

4.5 Protein database search

The Blast [12] software suite remains the most widely used tool for performing
DNA and protein database searches. In this context, the protein-specific variant,
Blastp, is utilized as the reference software. The PiM implementation, called
PANG [13], yields results comparable to those of Blastp in no-gap mode. For the
experiment, Blastp has been run with 32 threads and PANG with 32 UPMEM
PiM ranks.

The dataset consists of the SwissProt protein database, comprising approxi-
mately 560,000 curated protein sequences. The query set includes 10,000 protein
sequences randomly selected from a separate sequence repository, ensuring no
overlap with the reference database. The table below reports the electric con-
sumption together with the elapsed execution time.
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CPU PiM Energy Speed
32 threads 32 ranks Gain Up

520 W (850 sec.) 686 W (56 sec.) 10.5x 15.2x

Here we are in an extremely favorable situation for PiM architectures. Com-
putation times are greatly reduced, as is power consumption. In this type of
application, a great deal of time is spent searching for “hits”, which are then
used as a basis for calculating similarities. This search for hits generates a huge
number of memory accesses, which do not follow regular patterns. Deporting
this search directly into memory brings considerable gains.

5 Conclusion

This study demonstrates that not all genomic applications benefit equally from
the PiM architecture, either in terms of computation acceleration or energy re-
duction. The most favorable use cases are those that can be broken down into
thousands of independent tasks, enabling fine-grained parallelism. These appli-
cations can fully exploit the parallel processing units available in PiM systems,
leading to efficient execution.

A strong correlation was observed between speedup and energy savings. In
general, the greater the speedup achieved through parallelization, the more sig-
nificant the reduction in energy consumption.

While the focus of this study was on genomic workloads, the conclusions can
be extended to other domains with similar computational characteristics. Appli-
cations that support fine-grained parallelism and that exhibit intensive memory
access are particularly well-suited to PiM. In such cases, the architecture effec-
tively minimizes the traditional bottleneck of data movement. The optimal sce-
nario involves a dataset that remains resident in PiM memory and is queried or
processed intensively. Under these conditions, PiM enables low-latency, energy-
efficient processing by reducing memory transfer overhead.

Overall, PiM shows strong potential as an architectural solution for both
high-performance and energy-aware computing, particularly in domains where
massive parallelism and data locality can be exploited.
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